Ultrafast laser microwelding for transparent and heterogeneous materials

Kazuyoshi ITOH1 and Takayuki TAMAKI2

Osaka University1, Nara National College of Technology 2
Outline

- *Introduction to filamentation*
- *Ultra-fast laser micro-welding of glass with filaments*
- *Ultra-fast laser micro-welding of heterogeneous materials*
Filamentation

Normal Focusing

Nonlinear Medium

Lens

Filamentation

High-Intensity Pulse

Self Focusing

(Optical Kerr Effect)

Filament

Plasma Formation

3
Filamentation

- balancing between self-focusing and defocusing by plasma -

Scattering or luminescence from filament

Micrograph of the resultant index change

Magnified micrograph

(a) 200 µm

(b) 200 µm

(c) 50 µm
Formation of single filament

NA of focusing lens : 0.1
Exposure time : 5 min.
(300,000 pulses)

- Multiple filaments

- Scattering damages

Core diameter : ~ 2 µm
Applications of filamentation

- Waveguide writing
 Waveguides*¹, WG Couplers*²

- Writing optical elements
 Mirrors, Lenses*³, Optical devices*⁴

- Welding transparent materials

- Ultra-fast laser micro-welding of glass with filaments

Scanning the filament

Low repetition source
Fast scanning

Low repetition
Slow scanning

High repetition source

~ Gap

~ Accumulation of heat

~ No gap
Optical setup

- Wavelength: 800 nm
- Pulse duration: 130 fs
- Repetition: 1 kHz
- Incidence energy: 1.0 µJ/pulse
- Numerical aperture: 0.30
- Irradiation area: 100 µm x 100 µm
- Translation speed: 5.0 µm/s
Welding flat samples

(a) Samples

(b) Jig for welding

(c)
Micrographs

Top view

Side view
Joining strength (Same material)

15 MPa ~ 150 kgf/cm²

Usual adhesive ~ 50 kgf/cm²

(kgf: kilogram force)
Optical transmittance

- Fused silica glass: 87 ~ 89 %
 - Theoretical limit: 92 %
- Borosilicate glass: 81 ~ 87 %
 - Theoretical limit: 93 %
Effects of Annealing

Annealing makes welded part invisible.
(Implication of disappearance of defects or stress.)
Enhancement of joining strength & optical transmittance

<table>
<thead>
<tr>
<th></th>
<th>Joining strength</th>
<th>Optical transmittance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before annealing</td>
<td>After annealing</td>
</tr>
<tr>
<td>Borosilicate</td>
<td>15 MPa</td>
<td>33 MPa</td>
</tr>
<tr>
<td>Fused silica</td>
<td>15 Mpa</td>
<td>33 Mpa</td>
</tr>
<tr>
<td>Glass</td>
<td></td>
<td>(336 kgf/cm(^2))</td>
</tr>
</tbody>
</table>

Before annealing:
- Joining strength: 15 MPa
- Optical transmittance: 88% (Theoretical limit: 93%)

After annealing:
- Joining strength: 33 MPa
- Optical transmittance: 92% (Theoretical limit: 93%)

Before annealing:
- Joining strength: 15 Mpa
- Optical transmittance: 87% (Theoretical limit: 92%)

After annealing:
- Joining strength: 33 Mpa
Enhancement of optical transmittance by annealing

<table>
<thead>
<tr>
<th></th>
<th>Borosilicate glass</th>
<th>Fused silica glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before annealing</td>
<td>88 %</td>
<td>87 %</td>
</tr>
<tr>
<td>After annealing</td>
<td>92 %</td>
<td>91 %</td>
</tr>
</tbody>
</table>

(Theoretical limit: 93 %) (Theoretical limit: 92 %)
- Ultra-fast laser micro-welding of different glass
Heterogeneous welding:

dissimilar kinds of glass

Geometry

- **Borosilicate glass**
 - $39 \times 10^{-7}/°C$
- **Fused silica glass**
 - $5.9 \times 10^{-7}/°C$

Thermal expansion coefficient

Joining strength and transmittance

Joining strength

Pulse Energy [µJ/pulse]

- 15.3 MPa
- 15.2 MPa
- 14.9 MPa

Scanning Speed [mm/s]

- 0.1
- 1

Optical transmittance

Pulse Energy [µJ/pulse]

- 71.5 %
- 71.8 %
- 88.3 %

Scanning Speed [mm/s]

- 0.1
- 1

- 73.2 %
- 73.6 %
- 73.4 %

Values:

- Joining strength:
 - 15.3 MPa: 71.5 %
 - 15.2 MPa: 72.6 %
 - 14.9 MPa: 88.3 %

- Optical transmittance:
 - 71.8 %
 - 73.4 %
 - 73.6 %
Heterogeneous welding:
dissimilar kinds of materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Fused silica glass 5.9 [$\times 10^{-7}/^\circ\text{C}$]</th>
<th>Borosilicate glass 39 [$\times 10^{-7}/^\circ\text{C}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer</td>
<td>PMMA 700 [$\times 10^{-7}/^\circ\text{C}$]</td>
<td>14.9 MPa</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>Silicon 28 [$\times 10^{-7}/^\circ\text{C}$]</td>
<td>15.0 MPa</td>
</tr>
<tr>
<td>Metal</td>
<td>Cupper 183 [$\times 10^{-7}/^\circ\text{C}$]</td>
<td>14.9 MPa</td>
</tr>
<tr>
<td>Alloy</td>
<td>Stainless steel 175 [$\times 10^{-7}/^\circ\text{C}$]</td>
<td>14.9 MPa</td>
</tr>
</tbody>
</table>

*Thermal expansion coefficient

Wide range of heterogeneous welding

Geometry:
- Glass
- Other material
Ultra-fast laser micro-welding of glass and metal
Ultra-fast Laser Micro-welding of Glass and Copper

Realizing tight contact between glass and copper
Optical Setup
Optical microscope images

(a) Side view

(b) Top view

(c) Whole image

Laser source: Regenerative Ti:sapphire laser (Spectra Physics, Spitfire)

Central wavelength: 800 nm
Pulse duration: 130 fs
Repetition rate: 1 kHz
Pulse energy: 4 μJ/pulse
Scan speed: 1 mm/s

Joining strength: 23 MPa
Joining Strength

- Glass plate (5 × 10 × 0.7 mm³)
- Small glass plate (5 × 5 × 0.7 mm³)

Average: 21.5 MPa

0.38 µJ
No crack nor gap was observed.
But, some bumpy irregularity presents.
Summary

- Ultra-fast laser micro-welding of glass with filaments
- Ultra-fast laser micro-welding of homogeneous and heterogeneous welding, such as silica and borosilicate glass, silica glass and metals

average joining strength: 21.5 Mpa

(~220 kgf/cm^2)
Welding with High Repetition Laser Pulses

Wavelength: 1558 nm
Pulse duration: 947 fs
Repetition rate: 500 kHz
Input energy: 0.8 \(\mu \)J/pulse
Translation speed: 20 \(\mu \)m/s
Objective lens: 0.40-NA (Numerical aperture)

Samples: Borosilicate glass
Joint strength: 9.87 MPa @ 100 \(\mu \)m/s
6.81 MPa @ 200 \(\mu \)m/s
Conventional and ultra-fast laser micro-welding

Conventional laser micro-welding:
- Glass
- Other material
- Femtosecond pulses
- Local heating
- Glass and other material

Wide heating:
- Expansion due to temperature rise

Cooling with cracks:
- Contraction due to cooling

Cooling without cracks:
- Cooling without cracks
Application of Ultra-fast Laser Micro-welding to Metal Package (Glass & Kovar)

(a) Birds-eye view

(b) Top view
Coworkers:

Dr. Junji NISHII
National Institute of Advanced Industrial Science and Technology

Dr. Yasuyuki OZEKI and Mr. Tomoyuki INOUE
Osaka University

Mr. Satoshi ONDA
Yokogawa Electric Corporation

Mr. Seiji SOWA
Konica Minolta Opto, Inc.